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On the first day of Christmas, my true love gave to me...
... Perfect numbers!

A perfect number is a natural number whose divisors add up to the number
itself. The number 6 is a perfect example: the divisors of 6 are 1, 2 and 3 (we
exclude 6 itself, that is, we only consider proper divisors) and

1+24+3 = 6.

Hooray! People have known about perfect numbers for millennia and have
always been fascinated by them. Saint Augustine (354-430) thought that the
perfection of the number 6 is the reason why god chose to create the world in 6
days, taking a rest on the 7th. The Greek Nicomachus of Gerasa (60-120)
thought that perfect numbers produce virtue, just measure, propriety and beauty.
Numbers that are not perfect, for example numbers whose proper divisors add
up to more than the number itself, Nichomachus found very disturbing. He
accused them of producing excess, superfluity, exaggerations and abuse, and of
being like animals with "ten mouths, or nine lips, and provided with three lines
of teeth; or with a hundred arms, or having too many fingers on one of its
hands."

If you play around with numbers for a while you will see why people have
always been so fond of perfect numbers: they are very rare. The next one after 6
is 28, then it's 496, and for the fourth perfect number we have to go all the way
up to 8128. Throughout antiquity, and until well into the middle ages, those four
were the only perfect numbers that were known. Today we still only know of 48
of them, even though there are fast computers to help us find them. The largest
so far, discovered in January 2013, has over 34 million digits.

Will we ever find another one? We can't be sure — mathematicians believe
that there are infinitely many perfect numbers, so the supply will never run out,
but nobody has been able to prove this. It's one of the great mysteries of
mathematics. You can find out more in Number mysteries.
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On the second day of Christmas, my true love gave to me...

... One of our favourite proofs!

Here's one of the most elegant proofs in the history of maths. It shows that V2
is an irrational number, in other words, that it cannot be written as a fraction a/b

where a and b are whole numbers.

We start by assuming that V2 can be written as a fraction a/b and that a and

b have no common factor — if they did, we could simply cancel it out. In
symbols,
a/b =2

Squaring both sides gives

a’/b? =2

and multiplying by b? gives

a’=2b°.

This means that a is an even number: it's a multiple of 2. Now if a? is an
even number, then so is a (you can check for yourself that the square of an odd

number is odd). This means that a can be written as 2¢ for some other whole
number c. Therefore,

2b% = a% = (2c)? = 4c2.

Dividing through by 2 gives

b? = 2c2.

This means that b? is even, which again means that b is even. But then, both
a and b are even, which contradicts the assumption that they contain no

common factor. This contradiction implies that our original assumption, that \2
can be written as a fraction a/b, must be false. Therefore, \2 is irrational.



On the third day of Christmas, my true love gave to me...
... Complex numbers!

Solving equations often involves taking square roots of numbers and if you're
not careful you might accidentally take a square root of something that's
negative. That isn't allowed of course, but if you hold your breath and just carry
on, then you might eventually square the illegal entity again and end up with a
negative number that's a perfectly valid solution to your equation.

People first noticed this fact in the 15th century. A lot later on, in the 19th
century, William Rowan Hamilton noticed that the illegal numbers you come
across in this way can always be written as x + iy where x and y are ordinary
numbers and /i stands for the square root of -1 The number i itself can be
represented in this way with x = 0 and y = 1. Numbers of this form are called
complex numbers.

You can add two complex numbers like this:

X+iy)+Ww+iv)=x+u) +ily +v)

And you multiply them like this:

(X +iy)u +iv) =xu +ixv+ yu) + izyv = XU - yv + i(xv - yu).
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The complex number 7+2i.

But how can we visualise these numbers and their addition and
multiplication? The x and y components are normal numbers so we can
associate to them the point with coordinates (x, y) on the plane, which is where
you get to if you walk a distance x in the horizontal direction and a distance y in
the vertical direction. So the complex number (x+ u) + i(y + v), which is the
sum of (x + iy) and (u + iv), corresponds to the point you get to by walking a
distance x + u in the horizontal direction and a distance y + v in the vertical
direction. Makes sense.

What about multiplication? Think of the numbers that lie on your horizontal
axis with coordinates (x, 0) Multiplying them by -1 flips them over to the other
side of the point (0,0): (1,0) goes to (-1,0), (2,0) goes to (-2,0), and so on. In fact,
you can think of multiplication by -1 as a rotation: you rotate the whole plane
through 180 degrees about the point (0,0).



Mutliplication by i is
rotation through 90 degrees
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Multiplying by i.

What about multiplication by i, the square root of -1¢ Multiplying twice by i
is the same as multiplying by -1. So if the latter corresponds to a rotation
through 180 degrees, the former should correspond to rotation by 90 degrees.
And this works. Try multiplying any complex number, say 2 + 5/ by i and you
will see that the result corresponds to the point you get to by rotating through 90
degrees (counter-clockwise) about (0,0)

And what about multiplying not just by i but by a more difficult complex
number u + iv? Well, multiplying by an ordinary positive number corresponds to
stretching or shrinking the plane: multiplication by 2 takes a point (x,y) to (2x,
2y) which is further away from (0,0) (that’s stretching) and multiplication by 1/2
takes it to (x/2, y/2) which is closer to (0,0) (shrinking).

Multiplying by 2 is stretching.



It turns out that multiplication by a complex number u + iv corresponds to a
combination of rotation and shrinking/stretching. For example, multiplication by
-1 + 1.732j is rotation through 120 degrees followed by stretching by a factor of
2. So complex numbers are not just weird figments of the imagination designed
to help you solve equations, they’ve got a geometric existence in their own
right.

You can find out more about complex numbers and things you can do with
them in the Plus articles Curious quaternions, Unveiling_the Mandelbrot set,
Non-Euclidean geometry and Indra's pearls and Maths goes to the movies.
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On the fourth day of Christmas, my true love gave to me...
...A greedy algorithm!

Vending machines that don't return change are annoying, especially if the
prices they demand aren't nice round figures you can make up with a single
coin. If that's the case, then there's nothing but to hunt through your wallet,
fishing out the right coins to make up the amount exactly. What's the best way
of doing that? Without noticing many of us probably follow this recipe: find the
biggest (as in largest denomination) coin that fits into the amount, then the next-
biggest that fits into the remainder, and so on, until you (hopefully) hit the
required sum. As an example, if you're being asked for 85p, you probably fish a
50p coin out first, then a 20p coin, then a 10p coin, and finally a 5p coin. And
what if you haven't got all of the coins just mentioned in your wallet? In that
case you follow the same recipe using what you've got.

This greedy recipe (greedy because you always go for the biggest coin that
fits) seems to offer the best solution in that it seems to involve the fewest number
of coins to make up the amount you need. For example, supposing you do have
a 20p coin, but decide to go for two 10p coins instead, you increase the number
of coins to make up 85p from four to five. So the greedy algorithm seems useful,
not just for people struggling with vending machines, but also for cashiers
returning change to customers.

But is greed really always the best option? It turns out that this depends on
the coins that are available. Imagine, for example, you need to make up 8p.
Greed would tell you to go for a 5p coin, then a 2p coin and then a 1p coin.
And that's indeed the smallest number of coins to make up 8p with if you are
using Pound Sterling, Euros, US Dollars, and most other currencies. But now
imagine a currency that in addition to these denominations also has a 4p coin.
Then you could make up 8p with two of those, beating the greedy strategy by
one. Such a currency system might seem silly but it's not unheard-of: the pre-
decimal British coinage system was one for which the greedy recipe failed when
it came to minimising the number of coins needed to make up a given amount.
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On the fifth day of Christmas, my true love gave to me...
...Countable infinity!

An infinite set is called countable if you can count it. In other words, it's
called countable if you can put its members into one-to-one correspondence
with the natural numbers 1, 2, 3, ... . For example, a bag with infinitely many
apples would be a countable infinity because (given an infinite amount of time)
you can label the apples 1, 2, 3, etc.

Two countably infinite sets A and B are considered to have the same
"size" (or cardinality) because you can pair each element in A with one and only
one element in B so that no elements in either set are left over. This idea seems
to make sense, but it has some funny consequences. For example, the even
numbers are a countable infinity because you can link the number 2 to the
number 1, the number 4 to 2, the number 6 to 3 and so on. So if you consider
the totality of even numbers (not just a finite collection) then there are just as
many of them as natural numbers, even though intuitively you'd think there
should only be half as many.

Something similar goes for the rational numbers (all the numbers you can
write as fractions). You can list them as follows: first write down all the fractions
whose denominator and numerator add up to 2, then list all the ones where the
sum comes to 3, then 4, etc. This is an unfailing recipe to list all the rationals,
and once they are listed you can label them by the natural numbers 1, 2, 3, ... .
So there are just as many rationals as natural numbers, which again seems a bit
odd because you'd think that there should be a lot more of them.

It was Galileo who first noticed these funny results and they put him off
thinking about infinity. Later on the mathematician Georg_Cantor revisited the
idea. In fact, Cantor came up with a whole hierarchy of infinities, one "bigger"
than the other, of which the countable infinity is the smallest. His ideas were
controversial at first, but have now become an accepted part of pure
mathematics.

To find out more about uncountable infinities, see Counting numbers. You
can find out more about infinity in general in our collection of articles on
infinity.
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On the sixth day of Christmas, my true love gave to me...
...Counting numbers!

Are there more irrational numbers than rational numbers, or more rational
numbers than irrational numbers? Well, there are infinitely many of both, so the
question doesn't make sense. It turns out, however, that the set of rational
numbers is infinite in a very different way from the set of irrational numbers.

As we saw here, the rational numbers (those that can be written as fractions)
can be lined up one by one and labelled 1, 2, 3, 4, etc. They form what
mathematicians call a countable infinity. The same isn't true of the irrational
numbers (those that cannot be written as fractions): they form an uncountably
infinite set. In 1873 the mathematician Georg_Cantor came up with a beautiful
and elegant proof of this fact. First notice that when we put the rational numbers
and the irrational numbers together we get all the real numbers: each number
on the line is either rational or irrational. If the irrational numbers were
countable, just as the rationals are, then the real numbers would be countable
too — it's not too hard to convince yourself of that.

So let’s suppose the real numbers are countable, so that we can make a list of
them, for example

1.0.1234567...
2.1.4367892...
3.2.3987851...
4.3.7891234...
5.4.1415695...

and so on, with every real number occurring somewhere in the infinite list.
Now take the first digit after the decimal point of the first number, the second
digit after the decimal point of the second number, the third digit after the
decimal point of the third number, and so on, to get a new number 0.13876... .

Now change each digit of this new number, for example by adding 1 (and
changing a 9 to a 0). This gives the new number 0.24927... . This new number
is not the same as the first number on the list, because their first decimal digits
are different. Neither is it the same as the second number on the list, because
their second decimal digits are different. Carrying on like this shows that the
new number is different from every single number on the list, and so it cannot
appear anywhere in the list.

But we started with the assumption that every real number was on the list!
The only way to avoid this contradiction is to admit that the assumption that the
real numbers are countable is false. And this then also implies that the irrational
numbers are uncountable.


http://www-history.mcs.st-and.ac.uk/Biographies/Cantor.html

It's easy to see that an uncountable infinity is "bigger" than a countable one.
An uncountable infinity can form a continuum, such as the number line, in a
way that a countable infinity can't. Cantor went on to define all sorts of other
infinities too, one bigger than the other, with the countable infinity at the bottom
of the hierarchy. When he first published these ideas, Cantor faced strong
opposition from some of his colleagues. One of them, Henri Poincaré, described
Cantor's ideas as a "grave disease" and another, Leopold Kronecker, went so far
as to denounce Cantor as a "scientific charlatan" and "corrupter of youth".
Cantor suffered severe mental health problems which may have resulted in part
from the rejection his work had met with. But we now know that his work had
simply come too soon: 150 years on, Cantor's ideas form a central pillar of
mathematics and many of his results can be found in standard textbooks.

See our infinity_page to find out more about this and other things to do with
infinity.
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On the seventh day of Christmas, my true love gave to me...
...The perfect voting system!
Is there a perfect voting system? In the 1950s the economist Kenneth Arrow

asked himself this question and found that the answer is no, at least in the
setting he imagined.

Kenneth defined a voting system as follows. There is a population of voters
each of whom comes up with a preference ranking of the candidates. A voting
system takes these millions of preference rankings as input and by some method
returns a single ranking of candidates as output. The government can then be
formed on the basis of this single ranking.

For a voting system to make any democratic sense, Kenneth required it to
satisfy each of the following, fairly basic constraints:

1 The system should reflect the wishes of more than just one individual (so
there's no dictator).

2 If all voters prefer candidate x to candidate y, then x should come above y
in the final result (this condition is sometimes called unanimity).

3 The voting system should always return exactly one clear final ranking
(this condition is known as universality).

He also added a fourth, slightly more subtle condition:

4 In the final result, whether one candidate is ranked above another, say x
above vy, should only depend on how individual voters ranked x
compared to y. It shouldn't depend on how they ranked either of the two
compared to a third candidate, z. Arrow called this condition
independence of irrelevant alternatives.

Arrow proved mathematically that if there are three or more candidates and
two or more voters, no voting system that works by taking voters' preference
rankings as input and returns a single ranking as output can satisfy all the four
conditions. His theorem, called Arrow's Impossibility Theorem helped to earn
him the 1972 Nobel Prize in Economics.

You can find out more in the Plus articles Which voting system is best? and
Electoral impossibilities.
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On the eighth day of Christmas, my true love gave to me...
...The truth behind an important fallacy!

A woman's DNA matches that of a sample found at a crime scene. The
chances of a DNA match are just one in two million, so the woman must be
guilty, right?

Wrong. But it's a common mistake to make, known as the prosecutor's
fallacy. 1t mistakes the one in two million for the probability of the woman's
innocence. In order to assess the woman's guilt properly, we need to take the
fact that she matched the sample as a given, and see how much more likely this
makes her to be guilty than she was before the DNA evidence came to light.

A result called Bayes' theorem is useful in this context. The matching
probability above implies that the woman's DNA is two million times more
likely to match the sample if she is guilty, than if she is innocent. Bayes' theorem
now says that:

Odds of guilt after DNA evidence = 2,000,000 x Odds of guilt before DNA
evidence.

If our woman comes from a city of 500,000 people, and we think each of
them is equally likely to have committed the crime, then her odds of guilt before
the DNA evidence are about 1 in 500,000. Therefore:

Odds of guilt after DNA evidence = 2,000,000 x 1/500,000 = 4.

These are odds as we're used to them from the races. Translating the result
into probabilities, this gives an 80% chance of guilt. Definitely not beyond
reasonable doubt!

You can read more about the prosecutor's fallacy in [t's a match!, which
explores DNA evidence, and Beyond reasonable doubt, which explores a
miscarriage of justice based on the fallacy.
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On the ninth day of Christmas, my true love gave to me...
...Modular arithmetic!

You do modular arithmetic several times every day when you are thinking
about time. Imagine, for example, you're going on a train trip at 11pm that lasts
three hours. What time will you arrive? Not at 11+3 = 14 o'clock, but at 2
o'clock in the morning. That's because, on a 12-hour clock, you start counting
from the beginning again after you get to 12. (On a 24-hour clock, you start
again after you get to 24.) So, on a 12-hour clock you have:

4+9=1,
7+7=2,
5+12 =5,

and so on. When you are subtracting hours, you do the same but backwards:

11

1 =2
2=6.

You could play the same game using other numbers, apart from 12 and 24,
to define your cycle. For example, in modular arithmetic modulo 5 you have

4+2=1
3+44=2
1-4=2

3-5=3.

These sums can be a little tedious to work out if you're counting on your
fingers, but luckily there is a general method. Let's say you're doing arithmetic
modulo some natural number p and you're looking at some other natural
number x. To find the value of x modulo p (the value of x on a clock with p
hours), compute the remainder when dividing x by p: that's your result.

This also works when x is negative (noting that the remainder is defined to be
always positive). For example, for p = 12 and x = -3 we have

3=(-1)x12+09,
so the remainder is 9. Therefore -3 modulo 12 is equal to 9. (If you use the
modulus function in some computer languages you have to be a little careful

though, as some return a different value for negative numbers.)

If you want to add or subtract two numbers module some natural number p,
you simply work out the result, call it x, in ordinary arithmetic and then find the


http://en.wikipedia.org/wiki/Remainder

value of x modulo p.

There is clearly something very cyclical about modular arithmetic. Whatever
number p defines your arithmetic, you can think of it as counting forward or
backward in clock with p hours. To put this in technical maths language,
modular arithmetic modulo p gives you a cyclic group of order p. You can find
out more about group theory in this Plus article and about modular arithmetic
on our sister site NRICH.
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On the tenth day of Christmas, my true love gave to me...
...The fundamental group!

Topologists famously think that a doughnut is the same as a coffee cup
because one can be deformed into the other without tearing or cutting. In other
words, topology doesn't care about exact measurements of quantities like
lengths, angles and areas. Instead, it looks only at the overall shape of an object,
considering two objects to be the same as long as you can morph one into the
other without breaking it. But how do you work with such a slippery concept?

One useful tool is what's called the fundamental group of a shape. Take the
sphere as an example. Pick a point A on the sphere and consider all the loops
through that point - i.e. you look at all the paths you can trace out on the sphere
which start and end at your point A. You consider two loops to be equivalent if
you can morph one into the other without cutting either of them. You can
combine two loops p and g to get a third one by simply going around p first and
then going around g. Also, if you traverse a loop in the clockwise direction, then
this movement has an opposite, or an inverse, which is traversing it in the
counterclockwise direction.

These two properties, that two loops can be combined to get a third and that
every loop has an inverse (together with a couple of other properties), mean that
the set of loops (where you consider two loops as equivalent if the can be
morphed into one another) form a neat and self-contained structure called a
group. It turns out that as long as your object is path-connected (there's a path
linking any two points on it) this structure is the same no matter which point A
you used as the base for your loops.

Now on the sphere every loop can be transformed into every other loop. In
particular, every loop can be contracted into the trivial loop, which goes
nowhere and is just your base point A. The fundamental group in this case is
also trivial, in other words it contains just one loop. This is true not only for the
perfectly round sphere, but also for a deflated football, and for any other 2D
surface that's topologically the same as the sphere.

But now think of the surface of a doughnut, also called a torus. In this case
not all loops can be contracted to a point because they may wind around the
hole of the torus and also around its body. A general loop may wind around the
hole a total of m times and around the body a total of n times. It turns out that
any two loops are equivalent if they wind around the hole the same number of
times and also wind around the body the same number of times. The
fundamental group of the torus is the same as a group structure you get from
looking at ordered pairs of whole numbers (to be precise, it's same as the direct
product ZxZ, where Z is the set of whole numbers). This is true not only for a
perfectly round torus, but also for a really irregular and lumpy one. So the direct



product of ZxZ, which is a well-understood structure, gives a good
characterisation of tori, regardless of their exact geometry.

The concept of fundamental group is a powerful tool in topology, where you
can't use precise measurements to describe an object. It's also connected to one
of the trickiest problems of modern maths: the Poincaré conjecture. It seems
obvious that any object with a trivial fundamental group is topologically the
same as the sphere: a trivial fundamental group means that the object has no
holes for the loops to wind around and if there are no holes, then the object can
always be deformed into a perfect sphere. At the beginning of the twentieth
century Henri Poincaré asked whether a similar statement was true for the 3D
sphere (which is hard for us to visualise) and found the problem was a lot
trickier. It took around 100 years to prove that the answer is yes.

Read more about the Poincaré conjecture, about topology in general and
about groups on Plus.
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On the eleventh day of Christmas, my true love gave to me...
...The catenary!

When you suspend a chain from two hooks and let it hang naturally under its
own weight, the curve it describes is called a catenary. Any hanging chain will
naturally find this equilibrium shape, in which the forces of tension (coming
from the hooks holding the chain up) and the force of gravity pulling
downwards exactly balance.

Something beautiful happens when you turn a catenary curve upside down.
The inverted catenary will now describe an arch — and it turns out that it's the
most stable shape an arch can have. In a hanging chain the forces of tension all
act along the line of the curve. In the inverted catenary the forces of tension
become forces of compression. And since these forces are directed along the
line of the arch, the arch doesn't bend or buckle. If you want to build an arch,
you should make sure it contains the shape of an inverted catenary. That way it
will stand freely under its own weight and you'll also need to use a minimal
amount of materials.

The English architect Robert Hooke was the first to study the catenary
mathematically and in 1675 published an anagram (in Latin) of : "As hangs the
flexible line, so but inverted will stand the rigid arch." The arch above Wembley
Stadium has the shape of a catenary and Christopher Wren also intended to use
it in St. Paul's dome (find out more about St. Paul's here).

The equation of the catenary is
a(e¥a + ey,
This gives a whole family of curves, one for each value of the parameter a,

which determines the width of the catenary and also its lowest point above the
X-axis.
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The catenary for different values of a. Image: Geek3, CC BY-SA 3.0.
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On the twelfth day of Christmas, my true love gave to me...
...The second law of thermodynamics!

Occasionally our colleague Owen, who we share the Plus office with,
despairs of our messy desk and tidies it up. Our newly tidied desk is very
ordered and hence, in the language of physics, has low entropy. Entropy is a
measure of disorder of a physical system. And, as Owen knows from personal
experience, the entropy of our desk is certain to increase as it will become
messier and messier each time we appear in the office. Essentially this comes
down to a probabilistic argument — there are so many more ways for our desk
to be messy and just a few limited ways for it to be tidy. So unless someone
intervenes and tidies it up (which we must admit isn't our strong point) the
entropy is certain to increase.

Really it isn't our fault — you can't fight the laws of physics and this is one of
the most fundamental ones: the second law of thermodynamics. The entropy of
an isolated system never decreases. The law explains not only why desks never
tidy themselves when left alone, but also why ice melts in your drink. All
systems evolve to maximal entropy: the highly structured ice-cubes in the
warmer liquid form an inherently more ordered system than one where the ice
has melted and all the particles of the ex-cubes and drink have mingled
together. The highest entropy state of a system is also its equilibrium.

The second law of thermodynamics comes from the area of statistical
mechanics which describes the behaviour of large numbers of objects using
statistical principles. One obvious place this is useful is in the behaviour of gases
or liquids. We could try to write down (or simulate in a computer) the
Newtonian equations that describe each and every gas particle and all possible

interactions between them, but that would just be silly: there are around 3x1022
molecules in a litre of air so we would need a huge number of equations just to
describe the behaviour of each of these individually, let alone their interaction.
Instead you can predict the bulk behaviour of the whole system using statistics.

For example, if you take the lid off a jar of gas in an empty box you
intuitively know that the gas won't stay in the jar, it will gradually spread till it
evenly fills all the space available. Out of all the possible arrangements of gas
particles in the box, only a tiny number of correspond to the gas remaining
inside the now open jar. These are far outnumbered by the possible
arrangements of gas molecules spread through the whole box. The fact that the
gas molecules invariably spread out and don't move back into the jar is not a
certainty, it's just overwhelmingly more likely.

It may seem strange at first that a law of nature, such as the second law of
thermodynamics, is based on statistical likelihood — after all, laws are about
certainties and likelihoods incorporate the fact that there is uncertainty. To



illustrate just how unlikely a violation of this law is, the French mathematician,
Emile Borel, used an intriguing metaphor: he said that if a million monkeys
typed for ten hours a day for a year, it would be unlikely that their combined
writings would exactly equal the content of the world's richest libraries — and
that a violation of the laws of statistical mechanics would be even more unlikely
than that. The British physicist Arthur Eddington captured the strange link
between chance and certainty beautifully when he wrote, "When numbers are
large, chance is the best warrant for certainty. Happily in the study of molecules
and energy and radiation in bulk we have to deal with a vast population, and
we reach a certainty which does not always reward the expectations of those
who court the fickle goddess."

A very merry Christmas from everyone here at Plus magazine!
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