
  



On the first day of Christmas, my true love gave to me… 

… Perfect numbers!

A perfect number is a natural number whose divisors add up to the number 
itself. The number 6 is a perfect example: the divisors of 6 are 1, 2 and 3 (we 
exclude 6 itself, that is, we only consider proper divisors) and

1+2+3 = 6.

Hooray! People have known about perfect numbers for millennia and have 
always been fascinated by them. Saint Augustine (354–430) thought that the 
perfection of the number 6 is the reason why god chose to create the world in 6 
days, taking a rest on the 7th. The Greek Nicomachus of Gerasa (60-120) 
thought that perfect numbers produce virtue, just measure, propriety and beauty. 
Numbers that are not perfect, for example numbers whose proper divisors add 
up to more than the number itself, Nichomachus found very disturbing. He 
accused them of producing excess, superfluity, exaggerations and abuse, and of 
being like animals with "ten mouths, or nine lips, and provided with three lines 
of teeth; or with a hundred arms, or having too many fingers on one of its 
hands."

If you play around with numbers for a while you will see why people have 
always been so fond of perfect numbers: they are very rare. The next one after 6 
is 28, then it's 496, and for the fourth perfect number we have to go all the way 
up to 8128. Throughout antiquity, and until well into the middle ages, those four 
were the only perfect numbers that were known. Today we still only know of 48 
of them, even though there are fast computers to help us find them. The largest 
so far, discovered in January 2013, has over 34 million digits.

Will we ever find another one? We can't be sure — mathematicians believe 
that there are infinitely many perfect numbers, so the supply will never run out, 
but nobody has been able to prove this. It's one of the great mysteries of 
mathematics. You can find out more in Number mysteries.

http://en.wikipedia.org/wiki/Augustine_of_Hippo
http://www-history.mcs.st-and.ac.uk/Biographies/Nicomachus.html
https://plus.maths.org/content/maths-minute-number-mysteries


On the second day of Christmas, my true love gave to me… 

… One of our favourite proofs!

Here's one of the most elegant proofs in the history of maths. It shows that √2 
is an irrational number, in other words, that it cannot be written as a fraction a/b 
where a and b are whole numbers.

We start by assuming that √2 can be written as a fraction a/b and that a and 
b have no common factor — if they did, we could simply cancel it out. In 
symbols,

a/b = √2

Squaring both sides gives

a2/b2 = 2

and multiplying by b2 gives

a2 = 2b2.

This means that a2 is an even number: it’s a multiple of 2. Now if a2 is an 
even number, then so is a (you can check for yourself that the square of an odd 
number is odd). This means that a can be written as 2c for some other whole 
number c. Therefore,

2b2 = a2 = (2c)2 = 4c2.

Dividing through by 2 gives

b2 =  2c2.

This means that b2 is even, which again means that b  is even. But then, both 
a and b are even, which contradicts the assumption that they contain no 
common factor. This contradiction implies that our original assumption, that √2 
can be written as a fraction a/b, must be false. Therefore, √2 is irrational.

 



On the third day of Christmas, my true love gave to me… 

… Complex numbers!

Solving equations often involves taking square roots of numbers and if you're 
not careful you might accidentally take a square root of something that's 
negative. That isn't allowed of course, but if you hold your breath and just carry 
on, then you might eventually square the illegal entity again and end up with a 
negative number that's a perfectly valid solution to your equation.

People first noticed this fact in the 15th century. A lot later on, in the 19th 
century, William Rowan Hamilton noticed that the illegal numbers you come 
across in this way can always be written as x + iy where x and y are ordinary 
numbers and i stands for the square root of -1 The number i itself can be 
represented in this way with x = 0 and y = 1. Numbers of this form are called 
complex numbers.

You can add two complex numbers like this:

(x + iy) + (u + iv) = (x + u) + i(y  + v)

   
And you multiply them like this:

(x + iy)(u + iv) = xu  + i(xv + yu) + i2yv = xu - yv + i(xv - yu).



The complex number 1+2i.

But how can we visualise these numbers and their addition and 
multiplication? The x and y components are normal numbers so we can 
associate to them the point with coordinates (x, y) on the plane, which is where 
you get to if you walk a distance x in the horizontal direction and a distance y in 
the vertical direction. So the complex number (x+ u) + i(y  + v), which is the 
sum of (x + iy) and (u + iv), corresponds to the point you get to by walking a 
distance x + u in the horizontal direction and a distance y + v in the vertical 
direction. Makes sense.

What about multiplication? Think of the numbers that lie on your horizontal 
axis with coordinates (x, 0) Multiplying them by -1 flips them over to the other 
side of the point (0,0): (1,0) goes to (-1,0), (2,0) goes to (-2,0), and so on. In fact, 
you can think of multiplication by -1 as a rotation: you rotate the whole plane 
through 180 degrees about the point (0,0).



Multiplying by i.

What about multiplication by i, the square root of -1? Multiplying twice by i 
is the same as multiplying by -1. So if the latter corresponds to a rotation 
through 180 degrees, the former should correspond to rotation by 90 degrees. 
And this works. Try multiplying any complex number, say 2 + 5i by i and you 
will see that the result corresponds to the point you get to by rotating through 90 
degrees (counter-clockwise) about (0,0)

And what about multiplying not just by i but by a more difficult complex 
number u + iv? Well, multiplying by an ordinary positive number corresponds to 
stretching or shrinking the plane: multiplication by 2 takes a point (x,y) to (2x, 
2y) which is further away from (0,0) (that’s stretching) and multiplication by 1/2 
takes it to (x/2, y/2) which is closer to (0,0) (shrinking).

Multiplying by 2 is stretching.



It turns out that multiplication by a complex number u + iv corresponds to a 
combination of rotation and shrinking/stretching. For example, multiplication by 
-1 + 1.732i  is rotation through 120 degrees followed by stretching by a factor of 
2. So complex numbers are not just weird figments of the imagination designed 
to help you solve equations, they’ve got a geometric existence in their own 
right.

You can find out more about complex numbers and things you can do with 
them in the Plus articles Curious quaternions, Unveiling the Mandelbrot set, 
Non-Euclidean geometry and Indra's pearls and Maths goes to the movies.

https://plus.maths.org/content/curious-quaternions
https://plus.maths.org/content/unveiling-mandelbrot-set
https://plus.maths.org/content/non-euclidean-geometry-and-indras-pearls
https://plus.maths.org/content/maths-goes-movies


On the fourth day of Christmas, my true love gave to me… 

…A greedy algorithm!

Vending machines that don't return change are annoying, especially if the 
prices they demand aren't nice round figures you can make up with a single 
coin. If that's the case, then there's nothing but to hunt through your wallet, 
fishing out the right coins to make up the amount exactly. What's the best way 
of doing that? Without noticing many of us probably follow this recipe: find the 
biggest (as in largest denomination) coin that fits into the amount, then the next-
biggest that fits into the remainder, and so on, until you (hopefully) hit the 
required sum. As an example, if you're being asked for 85p, you probably fish a 
50p coin out first, then a 20p coin, then a 10p coin, and finally a 5p coin. And 
what if you haven't got all of the coins just mentioned in your wallet? In that 
case you follow the same recipe using what you've got.

This greedy recipe (greedy because you always go for the biggest coin that 
fits) seems to offer the best solution in that it seems to involve the fewest number 
of coins to make up the amount you need. For example, supposing you do have 
a 20p coin, but decide to go for two 10p coins instead, you increase the number 
of coins to make up 85p from four to five. So the greedy algorithm seems useful, 
not just for people struggling with vending machines, but also for cashiers 
returning change to customers.

But is greed really always the best option? It turns out that this depends on 
the coins that are available. Imagine, for example, you need to make up 8p. 
Greed would tell you to go for a 5p coin, then a 2p coin and then a 1p coin. 
And that's indeed the smallest number of coins to make up 8p with if you are 
using Pound Sterling, Euros, US Dollars, and most other currencies. But now 
imagine a currency that in addition to these denominations also has a 4p coin. 
Then you could make up 8p with two of those, beating the greedy strategy by 
one. Such a currency system might seem silly but it's not unheard-of: the pre-
decimal British coinage system was one for which the greedy recipe failed when 
it came to minimising the number of coins needed to make up a given amount.

http://gwydir.demon.co.uk/jo/units/money.htm
http://gwydir.demon.co.uk/jo/units/money.htm


On the fifth day of Christmas, my true love gave to me… 

…Countable infinity!

An infinite set is called countable if you can count it. In other words, it's 
called countable if you can put its members into one-to-one correspondence 
with the natural numbers 1, 2, 3, ... . For example, a bag with infinitely many 
apples would be a countable infinity because (given an infinite amount of time) 
you can label the apples 1, 2, 3, etc.

Two countably infinite sets A and B are considered to have the same 
"size" (or cardinality) because you can pair each element in A with one and only 
one element in B so that no elements in either set are left over. This idea seems 
to make sense, but it has some funny consequences. For example, the even 
numbers are a countable infinity because you can link the number 2 to the 
number 1, the number 4 to 2, the number 6 to 3 and so on. So if you consider 
the totality of even numbers (not just a finite collection) then there are just as 
many of them as natural numbers, even though intuitively you'd think there 
should only be half as many.

Something similar goes for the rational numbers (all the numbers you can 
write as fractions). You can list them as follows: first write down all the fractions 
whose denominator and numerator add up to 2, then list all the ones where the 
sum comes to 3, then 4, etc. This is an unfailing recipe to list all the rationals, 
and once they are listed you can label them by the natural numbers 1, 2, 3, ... . 
So there are just as many rationals as natural numbers, which again seems a bit 
odd because you'd think that there should be a lot more of them.

It was Galileo who first noticed these funny results and they put him off 
thinking about infinity. Later on the mathematician Georg Cantor revisited the 
idea. In fact, Cantor came up with a whole hierarchy of infinities, one "bigger" 
than the other, of which the countable infinity is the smallest. His ideas were 
controversial at first, but have now become an accepted part of pure 
mathematics.

To find out more about uncountable infinities, see Counting numbers. You 
can find out more about infinity in general in our collection of articles on 
infinity.

http://www-history.mcs.st-andrews.ac.uk/Biographies/Galileo.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Cantor.html
http://plus.maths.org/infinity


On the sixth day of Christmas, my true love gave to me… 

…Counting numbers!

Are there more irrational numbers than rational numbers, or more rational 
numbers than irrational numbers? Well, there are infinitely many of both, so the 
question doesn't make sense. It turns out, however, that the set of rational 
numbers is infinite in a very different way from the set of irrational numbers.

As we saw here, the rational numbers (those that can be written as fractions) 
can be lined up one by one and labelled 1, 2, 3, 4, etc. They form what 
mathematicians call a countable infinity. The same isn't true of the irrational 
numbers (those that cannot be written as fractions): they form an uncountably 
infinite set. In 1873 the mathematician Georg Cantor came up with a beautiful 
and elegant proof of this fact. First notice that when we put the rational numbers 
and the irrational numbers together we get all the real numbers: each number 
on the line is either rational or irrational. If the irrational numbers were 
countable, just as the rationals are, then the real numbers would be countable 
too — it's not too hard to convince yourself of that.

So let’s suppose the real numbers are countable, so that we can make a list of 
them, for example

1. 0.1234567…
2. 1.4367892…  
3. 2.3987851…  
4. 3.7891234… 
5. 4.1415695… 

and so on, with every real number occurring somewhere in the infinite list. 
Now take the first digit after the decimal point of the first number, the second 
digit after the decimal point of the second number, the third digit after the 
decimal point of the third number, and so on, to get a new number  0.13816… .

Now change each digit of this new number, for example by adding 1 (and 
changing a 9 to a 0). This gives the new number  0.24927… . This new number 
is not the same as the first number on the list, because their first decimal digits 
are different. Neither is it the same as the second number on the list, because 
their second decimal digits are different. Carrying on like this shows that the 
new number is different from every single number on the list, and so it cannot 
appear anywhere in the list.

But we started with the assumption that every real number was on the list! 
The only way to avoid this contradiction is to admit that the assumption that the 
real numbers are countable is false. And this then also implies that the irrational 
numbers are uncountable.

http://www-history.mcs.st-and.ac.uk/Biographies/Cantor.html


It's easy to see that an uncountable infinity is "bigger" than a countable one. 
An uncountable infinity can form a continuum, such as the number line, in a 
way that a countable infinity can't. Cantor went on to define all sorts of other 
infinities too, one bigger than the other, with the countable infinity at the bottom 
of the hierarchy. When he first published these ideas, Cantor faced strong 
opposition from some of his colleagues. One of them, Henri Poincaré, described 
Cantor's ideas as a "grave disease" and another, Leopold Kronecker, went so far 
as to denounce Cantor as a "scientific charlatan" and "corrupter of youth". 
Cantor suffered severe mental health problems which may have resulted in part 
from the rejection his work had met with. But we now know that his work had 
simply come too soon: 150 years on, Cantor's ideas form a central pillar of 
mathematics and many of his results can be found in standard textbooks.

See our infinity page to find out more about this and other things to do with 
infinity.

http://www-history.mcs.st-and.ac.uk/Biographies/Poincare.html
http://www-history.mcs.st-and.ac.uk/Biographies/Kronecker.html
http://plus.maths.org/content/infinity


On the seventh day of Christmas, my true love gave to me… 

…The perfect voting system!

Is there a perfect voting system? In the 1950s the economist Kenneth Arrow 
asked himself this question and found that the answer is no, at least in the 
setting he imagined.

Kenneth defined a voting system as follows. There is a population of voters 
each of whom comes up with a preference ranking of the candidates. A voting 
system takes these millions of preference rankings as input and by some method 
returns a single ranking of candidates as output. The government can then be 
formed on the basis of this single ranking.

For a voting system to make any democratic sense, Kenneth required it to 
satisfy each of the following, fairly basic constraints:

1 The system should reflect the wishes of more than just one individual (so 
there's no dictator).

2 If all voters prefer candidate x to candidate y, then x should come above y 
in the final result (this condition is sometimes called unanimity).

3 The voting system should always return exactly one clear final ranking 
(this condition is known as universality).

He also added a fourth, slightly more subtle condition:

4 In the final result, whether one candidate is ranked above another, say x 
above y, should only depend on how individual voters ranked x 
compared to y. It shouldn't depend on how they ranked either of the two 
compared to a third candidate, z. Arrow called this condition 
independence of irrelevant alternatives.

Arrow proved mathematically that if there are three or more candidates and 
two or more voters, no voting system that works by taking voters' preference 
rankings as input and returns a single ranking as output can satisfy all the four 
conditions. His theorem, called Arrow's Impossibility Theorem helped to earn 
him the 1972 Nobel Prize in Economics.

You can find out more in the Plus articles Which voting system is best? and 
Electoral impossibilities.

http://en.wikipedia.org/wiki/Kenneth_Arrow
https://plus.maths.org/content/which-voting-system-best
http://plus.maths.org/content/os/latestnews/jan-apr10/election/index?nl=0


On the eighth day of Christmas, my true love gave to me… 

…The truth behind an important fallacy!

A woman's DNA matches that of a sample found at a crime scene. The 
chances of a DNA match are just one in two million, so the woman must be 
guilty, right?

Wrong. But it's a common mistake to make, known as the prosecutor's 
fallacy. It mistakes the one in two million for the probability of the woman's 
innocence. In order to assess the woman's guilt properly, we need to take the 
fact that she matched the sample as a given, and see how much more likely this 
makes her to be guilty than she was before the DNA evidence came to light.

A result called Bayes' theorem is useful in this context. The matching 
probability above implies that the woman's DNA is two million times more 
likely to match the sample if she is guilty, than if she is innocent. Bayes' theorem 
now says that:

Odds of guilt after DNA evidence = 2,000,000 x Odds of guilt before DNA 
evidence.

If our woman comes from a city of 500,000 people, and we think each of 
them is equally likely to have committed the crime, then her odds of guilt before 
the DNA evidence are about 1 in 500,000. Therefore:

Odds of guilt after DNA evidence = 2,000,000 × 1/500,000 = 4.

These are odds as we're used to them from the races. Translating the result 
into probabilities, this gives an 80% chance of guilt. Definitely not beyond 
reasonable doubt!

You can read more about the prosecutor's fallacy in It's a match!, which 
explores DNA evidence, and Beyond reasonable doubt, which explores a 
miscarriage of justice based on the fallacy.

https://plus.maths.org/content/maths-minute-bayes-theorem
https://plus.maths.org/content/os/issue55/features/dnacourt/index
https://plus.maths.org/content/beyond-reasonable-doubt


On the ninth day of Christmas, my true love gave to me… 

…Modular arithmetic!

You do modular arithmetic several times every day when you are thinking 
about time.  Imagine, for example, you're going on a train trip at 11pm that lasts 
three hours. What time will you arrive? Not at 11+3 = 14 o'clock, but at 2 
o'clock in the morning. That's because, on a 12-hour clock, you start counting 
from the beginning again after you get to 12. (On a 24-hour clock, you start 
again after you get to 24.) So, on a 12-hour clock you have:

4 + 9 = 1,
7 + 7 = 2,
5 + 12 = 5,

and so on. When you are subtracting hours, you do the same but backwards:

4 - 7 = 9
1 - 11 = 2
6 - 12 = 6.

You could play the same game using other numbers, apart from 12 and 24, 
to define your cycle. For example, in modular arithmetic modulo 5 you have

4 + 2 = 1
3 + 4 = 2
1 - 4 = 2
3 - 5 = 3.

These sums can be a little tedious to work out if you're counting on your 
fingers, but luckily there is a general method. Let's say you're doing arithmetic 
modulo some natural number p and you're looking at some other natural 
number x. To find the value of x modulo p (the value of x on a clock with p 
hours), compute the remainder when dividing x by p: that's your result.

This also works when x is negative (noting that the remainder is defined to be 
always positive). For example, for p = 12 and x = -3 we have

-3 = (-1) x 12 + 9,

so the remainder is 9. Therefore -3 modulo 12 is equal to 9. (If you use the 
modulus function in some computer languages you have to be a little careful 
though, as some return a different value for negative numbers.)

If you want to add or subtract two numbers module some natural number p, 
you simply work out the result, call it x, in ordinary arithmetic and then find the 

http://en.wikipedia.org/wiki/Remainder


value of x modulo p.

There is clearly something very cyclical about modular arithmetic. Whatever 
number p defines your arithmetic, you can think of it as counting forward or 
backward in clock with p hours. To put this in technical maths language, 
modular arithmetic modulo p gives you a cyclic group of order p. You can find 
out more about group theory in this Plus article and about modular arithmetic 
on our sister site NRICH.

https://plus.maths.org/content/maths-a-minute-groups
https://plus.maths.org/content/maths-a-minute-groups
https://plus.maths.org/content/maths-a-minute-groups
http://nrich.maths.org/4350


On the tenth day of Christmas, my true love gave to me… 

…The fundamental group!

Topologists famously think that a doughnut is the same as a coffee cup 
because one can be deformed into the other without tearing or cutting. In other 
words, topology doesn't care about exact measurements of quantities like 
lengths, angles and areas. Instead, it looks only at the overall shape of an object, 
considering two objects to be the same as long as you can morph one into the 
other without breaking it. But how do you work with such a slippery concept?

One useful tool is what's called the fundamental group of a shape. Take the 
sphere as an example. Pick a point A on the sphere and consider all the loops 
through that point - i.e. you look at all the paths you can trace out on the sphere 
which start and end at your point A. You consider two loops to be equivalent if 
you can morph one into the other without cutting either of them. You can 
combine two loops p and q to get a third one by simply going around p first and 
then going around q. Also, if you traverse a loop in the clockwise direction, then 
this movement has an opposite, or an inverse, which is traversing it in the 
counterclockwise direction.

These two properties, that two loops can be combined to get a third and that 
every loop has an inverse (together with a couple of other properties), mean that 
the set of loops (where you consider two loops as equivalent if the can be 
morphed into one another) form a neat and self-contained structure called a 
group. It turns out that as long as your object is path-connected (there's a path 
linking any two points on it) this structure is the same no matter which point A 
you used as the base for your loops.

Now on the sphere every loop can be transformed into every other loop. In 
particular, every loop can be contracted into the trivial loop, which goes 
nowhere and is just your base point A. The fundamental group in this case is 
also trivial, in other words it contains just one loop. This is true not only for the 
perfectly round sphere, but also for a deflated football, and for any other 2D 
surface that's topologically the same as the sphere.

But now think of the surface of a doughnut, also called a torus. In this case 
not all loops can be contracted to a point because they may wind around the 
hole of the torus and also around its body. A general loop may wind around the 
hole a total of m times and around the body a total of n times. It turns out that 
any two loops are equivalent if they wind around the hole the same number of 
times and also wind around the body the same number of times. The 
fundamental group of the torus is the same as a group structure you get from 
looking at ordered pairs of whole numbers (to be precise, it's same as the direct 
product ZxZ, where Z is the set of whole numbers). This is true not only for a 
perfectly round torus, but also for a really irregular and lumpy one. So the direct 



product of ZxZ, which is a well-understood structure, gives a good 
characterisation of tori, regardless of their exact geometry.

The concept of fundamental group is a powerful tool in topology, where you 
can't use precise measurements to describe an object. It's also connected to one 
of the trickiest problems of modern maths: the Poincaré conjecture. It seems 
obvious that any object with a trivial fundamental group is topologically the 
same as the sphere: a trivial fundamental group means that the object has no 
holes for the loops to wind around and if there are no holes, then the object can 
always be deformed into a perfect sphere. At the beginning of the twentieth 
century Henri Poincaré asked whether a similar statement was true for the 3D 
sphere (which is hard for us to visualise) and found the problem was a lot 
trickier. It took around 100 years to prove that the answer is yes.

Read more about the Poincaré conjecture, about topology in general and 
about groups on Plus.

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Poincare.html
https://plus.maths.org/content/taxonomy/term/692
https://plus.maths.org/content/taxonomy/term/613
https://plus.maths.org/content/taxonomy/term/733


On the eleventh day of Christmas, my true love gave to me… 

…The catenary!

When you suspend a chain from two hooks and let it hang naturally under its 
own weight, the curve it describes is called a catenary. Any hanging chain will 
naturally find this equilibrium shape, in which the forces of tension (coming 
from the hooks holding the chain up) and the force of gravity pulling 
downwards exactly balance.

Something beautiful happens when you turn a catenary curve upside down. 
The inverted catenary will now describe an arch — and it turns out that it's the 
most stable shape an arch can have. In a hanging chain the forces of tension all 
act along the line of the curve. In the inverted catenary the forces of tension 
become forces of compression. And since these forces are directed along the 
line of the arch, the arch doesn't bend or buckle. If you want to build an arch, 
you should make sure it contains the shape of an inverted catenary. That way it 
will stand freely under its own weight and you'll also need to use a minimal 
amount of materials.

The English architect Robert Hooke was the first to study the catenary 
mathematically and in 1675 published an anagram (in Latin) of : "As hangs the 
flexible line, so but inverted will stand the rigid arch." The arch above Wembley 
Stadium has the shape of a catenary and Christopher Wren also intended to use 
it in St. Paul's dome (find out more about St. Paul's here).

The equation of the catenary is

a(ex/a + e-x/a)/2.

   
This gives a whole family of curves, one for each value of the parameter a, 

which determines the width of the catenary and also its lowest point above the 
x-axis.

https://plus.maths.org/content/maths-minute-st-pauls-dome


The catenary for different values of a. Image: Geek3, CC BY-SA 3.0.

https://en.wikipedia.org/wiki/Catenary#/media/File:Catenary-pm.svg
http://creativecommons.org/licenses/by-sa/3.0


On the twelfth day of Christmas, my true love gave to me… 

…The second law of thermodynamics!

Occasionally our colleague Owen, who we share the Plus office with, 
despairs of our messy desk and tidies it up. Our newly tidied desk is very 
ordered and hence, in the language of physics, has low entropy. Entropy is a 
measure of disorder of a physical system. And, as Owen knows from personal 
experience, the entropy of our desk is certain to increase as it will become 
messier and messier each time we appear in the office. Essentially this comes 
down to a probabilistic argument — there are so many more ways for our desk 
to be messy and just a few limited ways for it to be tidy. So unless someone 
intervenes and tidies it up (which we must admit isn't our strong point) the 
entropy is certain to increase.

Really it isn't our fault — you can't fight the laws of physics and this is one of 
the most fundamental ones: the second law of thermodynamics. The entropy of 
an isolated system never decreases. The law explains not only why desks never 
tidy themselves when left alone, but also why ice melts in your drink. All 
systems evolve to maximal entropy: the highly structured ice-cubes in the 
warmer liquid form an inherently more ordered system than one where the ice 
has melted and all the particles of the ex-cubes and drink have mingled 
together. The highest entropy state of a system is also its equilibrium.

The second law of thermodynamics comes from the area of statistical 
mechanics which describes the behaviour of large numbers of objects using 
statistical principles. One obvious place this is useful is in the behaviour of gases 
or liquids. We could try to write down (or simulate in a computer) the 
Newtonian equations that describe each and every gas particle and all possible 
interactions between them, but that would just be silly: there are around 3x1022 
molecules in a litre of air so we would need a huge number of equations just to 
describe the behaviour of each of these individually, let alone their interaction. 
Instead you can predict the bulk behaviour of the whole system using statistics.

For example, if you take the lid off a jar of gas in an empty box you 
intuitively know that the gas won't stay in the jar, it will gradually spread till it 
evenly fills all the space available. Out of all the possible arrangements of gas 
particles in the box, only a tiny number of correspond to the gas remaining 
inside the now open jar. These are far outnumbered by the possible 
arrangements of gas molecules spread through the whole box. The fact that the 
gas molecules invariably spread out and don't move back into the jar is not a 
certainty, it's just overwhelmingly more likely.

It may seem strange at first that a law of nature, such as the second law of 
thermodynamics, is based on statistical likelihood — after all, laws are about 
certainties and likelihoods incorporate the fact that there is uncertainty. To 



illustrate just how unlikely a violation of this law is, the French mathematician, 
Émile Borel, used an intriguing metaphor: he said that if a million monkeys 
typed for ten hours a day for a year, it would be unlikely that their combined 
writings would exactly equal the content of the world's richest libraries — and 
that a violation of the laws of statistical mechanics would be even more unlikely 
than that. The British physicist Arthur Eddington captured the strange link 
between chance and certainty beautifully when he wrote, "When numbers are 
large, chance is the best warrant for certainty. Happily in the study of molecules 
and energy and radiation in bulk we have to deal with a vast population, and 
we reach a certainty which does not always reward the expectations of those 
who court the fickle goddess."

You can read more about entropy and typing monkeys on Plus.

A very merry Christmas from everyone here at Plus magazine!

http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Borel.html
http://www-history.mcs.st-andrews.ac.uk/Biographies/Eddington.html
https://plus.maths.org/content/taxonomy/term/477
https://plus.maths.org/content/infinite-monkey-businesst

